

TickMark.Ai

Mumbai

Class: EM - CLASS 9

Subject: Mathematics - Part 2 (Geometry)

 Time:1 hrs
Marks:20

Q1)

(1) 18 cm

(2) concentric circles

(3) Parallel to X - axis

(4) 4.5 cm

Q2(A))

(1) (1) seg OP \perp chord AB

(2) seg OP

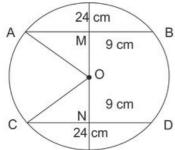
(3) radii of the same circle

Mark A

(4) c.s.c.t

(2) (1) Angle of rectangle

(2) Pythagoras theorem


(3) 242 + 72

(4) 625

(5) 25 cm

(B))

(1)

In circle, with center O

chord AB = chord CD = 24 cm

and OM = ON = 9 cm

$$\mathsf{AM} = \frac{1}{2} \times \mathsf{AB}$$

...(Given)

... (Given)

...(Perpendicular drawn from centre to the chord bisect the chord)

$$AM = \frac{1}{2} \times 24$$

$$AM = 12 cm$$

In △AMO,

m∠AMO = 90°

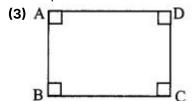
By Pythagoras theorem

 $(AO)^2 = (AM)^2 + (MO)^2$

$$\therefore (AO)^2 = (12)^2 + (9)^2$$

$$\therefore (AO)^2 = 144 + 81$$

$$(AO)^2 = 225$$


:. Radius of circle is 15 cm.

(2)

TickMark.Ai | Mumbai

These points are not collinear.

Given: \square ABCD is a rectangle.

To Prove: Rectangle ABCD is a parallelogram.

Solution:

Let \square ABCD be a rectangle

$$\therefore \angle A \cong \angle B \cong \angle C \cong \angle D = 90^{\circ}$$

...(Each angle of a rectangle is right angle)

 $\therefore \angle A \cong \angle C$ and $\angle D \cong \angle B$

Since opposite angles of a rectangle are congruent. Hence, every rectangle is a parallelogram.

Q3)

(1)
$$3x - y = 0$$

When x = 0,

y = 3x

= 3(0)

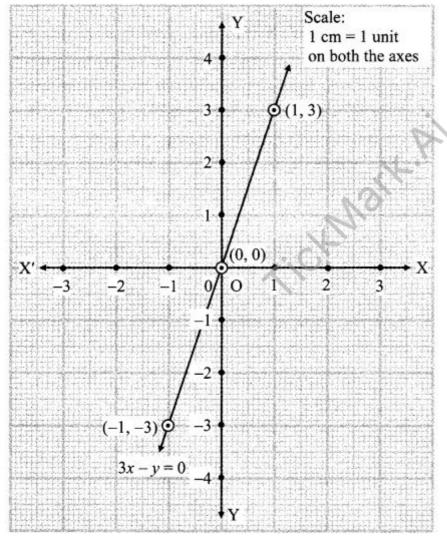
= 0

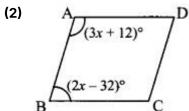
When x = 1,

y = 3x

= 3(1)

= 3


When x = -1,


y = 3x

= 3(-1)

= -3

х	0	1	-1
У	0	3	-3
(x , y)	(0 , 0)	(1,3)	(-1 , -3)

ABCD is a parallelogram

∴ AD II BC

... (Given)

TickMark.Ai | Mumbai

 $\therefore 3x + 12 + 2x - 32 = 180^{\circ}$

... (Given)

$$\therefore 5x - 20 = 180^{\circ}$$

$$5x = 200^{\circ}$$

$$\angle A = 3x + 12 = 3 \times 40 + 12 = 132^{\circ}$$

$$\angle B = 2x - 32 = 2 \times 40 - 32 = 48^{\circ}$$

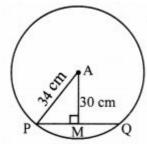
... (Opposite angles of a parallelogram are congruent)

 $\angle B = \angle D$ ∴ ∠C = 132° ... (3) (Opposite angles of a parallelogram are congruent)

... (Adjacent angles of a parallelogram are supplementary)

... (From 1 and 3)

(3) Given: In a circle with centre A,


PA is radius and PQ is chord,

seg AM ⊥ chord PQ, P-M-Q

AP = 34 cm, AM = 30 cm

To Find: Length of the chord (PQ) = ?

Solution:

In ΔAMP,

$$\therefore AP^2 = AM^2 + PM^2$$

...(Pythagoras theorem)

$$34^2 = 30^2 + PM^2$$

$$\therefore PM^2 = 34^2 - 30^2$$

$$\therefore PM^2 = (34 - 30)(34 + 30)$$

...
$$(a^2 - b^2 = (a - b)(a + b))$$

$$\therefore PM^2 = 4 \times 64$$

$$\therefore$$
 PM = $\sqrt{4x64}$

...(1) (Taking square root on both sides)

$$\therefore$$
 PM = 2 × 8 = 16cm

Now, PM = $\frac{1}{2}$ (PQ)

...(Perpendicular drawn from the centre of a circle to the chord bisects the

chord)

$$16 = \frac{1}{2}(PQ)$$

...(From (1))

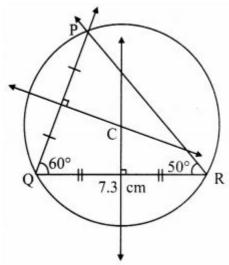
$$\therefore$$
 PQ = 16 × 2

: The length of the chord of the circle is 32cm.

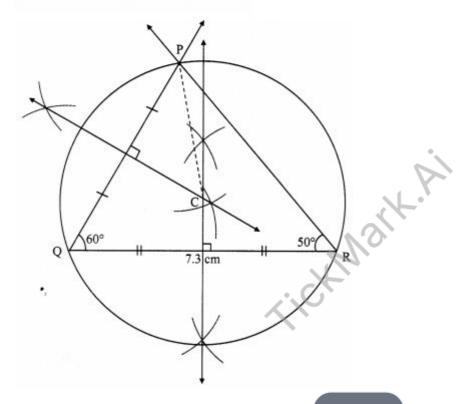
Q4)

side AB ∥ side PQ

... (Given)


side AB ≅ side PQ

... (Given)


∴ □ABQP is a parallelogram

TickMark.Ai | Mumbai

(A □ABQPis parallelogram if the same pair of opposite sides is parallel as well as ≅) \therefore AP = BQ, APII BQ ... (Opposite sides of parallelogram are parallel and congruent) In □ACRP, side AC | side PR side AC ≅ side PR ... (Given) ∴ □ACRP is a parallelogram (A ☐ ACRP is parallelogram if the same pair of opposite sides is parallel as well as ≅) side AP ≅ side CR and AP II CR ... (Opposite sides of parallelogram are parallel and congruent) In BCRQ side BQ ∥ side CR side BQ ≅ side CR ...(From (3) and (4)) ∴ □BCRQ is a parallelogram (A \square BCRQ is parallelogram if the same pair of opposiet sides is parallel as well as \cong) (Opposite sides of parallelogram are parallel) and seg BC \u2224 seg QR. ∴ seg BC II seg QR (2) In ΔPQR, $\angle P + \angle Q + \angle R = 180^{\circ}$...(Seem of all angles of a Δ is 180°) $\therefore 70^{\circ} + \angle Q + 50^{\circ} = 180^{\circ}$ LickNaik.ki $\therefore 120^{\circ} + \angle Q = 180^{\circ}$ $\therefore \angle Q = 180^{\circ} - 120^{\circ}$ ∴ ∠Q = 60°

Rough Figure

All the Best